您好!歡迎光臨烜芯微科技品牌官網(wǎng)!

深圳市烜芯微科技有限公司

ShenZhen XuanXinWei Technoligy Co.,Ltd
二極管、三極管、MOS管、橋堆

全國(guó)服務(wù)熱線:18923864027

負(fù)載驅(qū)動(dòng)器電路的實(shí)現(xiàn)方案介紹
  • 發(fā)布時(shí)間:2021-06-09 15:33:19
  • 來(lái)源:
  • 閱讀次數(shù):
負(fù)載驅(qū)動(dòng)器電路的實(shí)現(xiàn)方案介紹
在很多應(yīng)用中,都需要用到能夠?yàn)樨?fù)載提供適當(dāng)功率的放大器;另外還需保持良好的直流精度,而負(fù)載的大小決定了目標(biāo)電路的類型。精密運(yùn)算放大器能驅(qū)動(dòng)功率要求不足 50 mW 的負(fù)載,而搭配了精密運(yùn)算放大器輸入級(jí)和分立功率晶體管輸出級(jí)的復(fù)合放大器可以用來(lái)驅(qū)動(dòng)功率要求為數(shù) W 的負(fù)載。 但是,在中等功率范圍內(nèi)卻沒有優(yōu)秀的解決方案。 在這個(gè)范圍內(nèi),不是運(yùn)算放大器無(wú)法驅(qū)動(dòng)負(fù)載,就是電路過于龐雜而昂貴。
最近在設(shè)計(jì)惠斯登電橋驅(qū)動(dòng)器時(shí),這種兩難處境更為明顯。激勵(lì)電壓直接影響失調(diào)和范圍,因此需要具有直流精度。這種情況下,源極電壓和電橋之間的容差不足 1 mV。 若以 7 V 至 15 V 電源供電,則電路必須以單位增益將電橋從 100 mV 驅(qū)動(dòng)至 5 V。
使問題變得更為復(fù)雜的是,它能使用各種不同的橋式電阻 例如,應(yīng)變計(jì)的標(biāo)準(zhǔn)阻抗為 120 Ω或 350 Ω。若采用 120 Ω電橋,則放大器必須提供 42 mA 電流,才能保持 5 V 電橋驅(qū)動(dòng)能力。 此外,電路驅(qū)動(dòng)能力必須高達(dá) 10 nF。 這是考慮電纜和電橋耦合電容后得到的數(shù)值。
放大器選擇
設(shè)計(jì)該電路的第一步,是選擇可以驅(qū)動(dòng)負(fù)載的放大器。 其壓差(VOH) 在目標(biāo)負(fù)載電流情況下,必須位于電路的可用裕量范圍內(nèi)。 針對(duì)該設(shè)計(jì)的最小電源電壓為 7 V,最大輸出為 5 V。若裕量為 250 mV,則可用裕量(VDD – VOUT)等于 1.75 V。目標(biāo)負(fù)載電流為 42 mA。
精密、雙通道運(yùn)算放大器 ADA4661-2 具有軌到軌輸入和輸出特性。 該器件的大輸出級(jí)可驅(qū)動(dòng)大量電流。 源電流為 40 mA 時(shí),數(shù)據(jù)手冊(cè)中的壓差電壓規(guī)格為 900 mV,因此可輕松滿足 1.75 V 裕量要求。
壓差限制了電路采用低壓電源工作,而功耗則限制了電路采用高壓電源工作。 可計(jì)算芯片升溫,確定最大安全工作溫度。 MSOP 封裝簡(jiǎn)化了原型制作,但 LFCSP 封裝的熱性能更佳,因此如有可能應(yīng)當(dāng)采用 LFCSP 封裝。 MSOP 的熱阻(θJA) 等于 142°C/W,LFCSP 的熱阻等于 83.5°C/W。 最大芯片升溫可通過將熱阻乘以最大功耗計(jì)算得到。 當(dāng)電源為 15 V 且輸出為 5 V 時(shí),裕量為 10 V。最大電流為 42 mA,因此功耗為 420 mW。 最終的芯片升溫(MSOP 為 60°C,LFCSP 為 35°C)限制最大環(huán)境溫度為 65°C (MSOP)以及 90°C (LFCSP)。
為保持精確的電橋激勵(lì)電壓,芯片和封裝的組合熱性能同樣十分重要。 不幸的是,驅(qū)動(dòng)大輸出電流時(shí),某些運(yùn)算放大器的性能下降明顯。 輸出級(jí)功耗使得芯片上的溫度梯度極大,從而導(dǎo)致匹配晶體管和調(diào)節(jié)電路之間的不平衡。 ADA4661-2 設(shè)計(jì)用于驅(qū)動(dòng)大功率,同時(shí)抑制這些溫度梯度。
反饋環(huán)路穩(wěn)定
滿足負(fù)載 - 電容規(guī)格不容易,因?yàn)榇蟛糠诌\(yùn)算放大器在不使用外部補(bǔ)償?shù)那闆r下無(wú)法驅(qū)動(dòng) 10 nF 的容性負(fù)載。 驅(qū)動(dòng)大容性負(fù)載的一種經(jīng)典技巧,是使用多個(gè)反饋拓?fù)洌鐖D 1 所示。圖中隔離電阻 RISO 將放大器輸出和負(fù)載電容 CLOAD 隔離。 將輸出信號(hào) VOUT 通過反饋電阻 RF 進(jìn)行回送,便能保持直流精度。 通過電容 CF 反饋放大器輸出,可保持環(huán)路穩(wěn)定性。
如需使該電路有效,RISO 必須足夠大,以便總負(fù)載阻抗在放大器的單位增益頻率下表現(xiàn)出純阻性。 這是很困難的,因?yàn)樵撾娮枭蠒?huì)有電壓下降。 通過分配最差情況下的剩余電壓裕量,可確定 RISO 的最大值。 6.75 V 電源以及 5 V 輸出允許 1.75 V 總壓差。 放大器 VOH 占用總壓差的 900 mV,因此電阻上的壓降最高允許達(dá)到 850 mV。 如此,便可將 RISO 的最大值限制為 20 Ω。2 nF 負(fù)載電容在該放大器的單位增益交越頻率 4 MHz 處產(chǎn)生一個(gè)極點(diǎn)。 顯然,多反饋無(wú)法滿足該要求。
負(fù)載驅(qū)動(dòng)器電路
圖 1. 多反饋拓?fù)?/div>
另一種穩(wěn)定重載緩沖器的方法是使用混合單位跟隨器拓?fù)?,如圖 2 所示。這種方法通過降低反饋系數(shù),強(qiáng)迫反饋環(huán)路在較低頻率處發(fā)生交越,而非嘗試移除負(fù)載 - 電容形成的極點(diǎn)。 由于存在負(fù)載極點(diǎn),因此會(huì)產(chǎn)生過多相移;通過強(qiáng)迫環(huán)路在發(fā)生過多相移之前完成交越,便可實(shí)現(xiàn)電路穩(wěn)定性。
T 反饋系數(shù)是噪聲增益的倒數(shù),因此人們可能得出結(jié)論,認(rèn)為這種方法擯棄了采用單位增益信號(hào)的原則。 若電路采用傳統(tǒng)反相或同相配置,那么這種觀點(diǎn)是正確的。但若對(duì)原理圖作深入考察,便會(huì)發(fā)現(xiàn)兩個(gè)輸入均被驅(qū)動(dòng)。 分析該電路的一種簡(jiǎn)便方法是將 –RF/RS 反相增益與 (1 + RF/RS)同相增益相疊加。 這樣便可得到以+1 信號(hào)增益以及 (RS + RF)/RS 噪聲增益工作的電路。 針對(duì)反饋系數(shù)和信號(hào)增益的獨(dú)立控制允許該電路穩(wěn)定任何大小的負(fù)載,但代價(jià)是電路帶寬。
然而,混合單位跟隨器電路具有某些缺點(diǎn)。 第一個(gè)問題是,噪聲增益在所有頻率下都很高,因此直流誤差(如失調(diào)電壓,VOS) 通過噪聲增益而放大。 這使得滿足直流規(guī)格的任務(wù)變得尤為艱難。 第二個(gè)缺點(diǎn)需對(duì)放大器的內(nèi)部工作原理有一定了解。 該放大器具有三級(jí)架構(gòu),采用級(jí)聯(lián)式米勒補(bǔ)償。 輸出級(jí)有自己的固定內(nèi)部反饋。 這使得外部反饋環(huán)路有可能實(shí)現(xiàn)穩(wěn)定,同時(shí)使輸出級(jí)反饋環(huán)路變得不穩(wěn)定。
負(fù)載驅(qū)動(dòng)器電路
圖 2. 混合單位跟隨器拓?fù)?/div>
通過將兩個(gè)電路的工作原理相結(jié)合,便可解決這兩個(gè)缺點(diǎn),如圖 3 所示。多反饋分隔低頻和高頻反饋路徑,并加入了足夠多的容性負(fù)載隔離,從而最大程度減少輸出級(jí)的穩(wěn)定性問題。 利用電橋電壓,通過反饋電阻 RF. 驅(qū)動(dòng)低頻反饋。 利用放大器輸出,通過反饋電容 CF 驅(qū)動(dòng)高頻反饋。
在高頻時(shí),電路還表現(xiàn)為混合單位跟隨器。 高頻噪聲增益由電容阻抗確定,數(shù)值等于 (CS + CF)/CF. 該噪聲增益允許反饋環(huán)路在一個(gè)足夠低的頻率上完成交越,而負(fù)載電容不會(huì)降低該頻率處的穩(wěn)定性。 由于低頻噪聲增益為單位增益,因此可保持電路的直流精度。
負(fù)載驅(qū)動(dòng)器電路
圖 3. 電橋驅(qū)動(dòng)器原理圖
保持直流精度要求十分留意信號(hào)走線,因?yàn)殡娐分写嬖诖箅娏鳌?從 42 mA 的最大負(fù)載電流中,僅需 7 mΩ 即可產(chǎn)生 300 µV 壓降;該誤差已相當(dāng)于放大器的失調(diào)電壓。
解決這個(gè)問題的一種典型方法是使用 4 線開爾文連接,利用兩個(gè)載流連接(通常稱為"強(qiáng)制")驅(qū)動(dòng)負(fù)載電流,另外兩線為電壓測(cè)量連接(通常稱為"檢測(cè)")。 檢測(cè)連接必須盡可能靠近負(fù)載,以防任何負(fù)載電流流過。
對(duì)于橋式驅(qū)動(dòng)器電路而言,檢測(cè)連接應(yīng)在電橋的頂部和底部直接實(shí)現(xiàn)。 在負(fù)載和檢測(cè)線路之間不應(yīng)共享任何 PCB 走線或線纜。 GNDSENSE 連接應(yīng)當(dāng)經(jīng)路由后回到電壓源 VIN。 例如,假設(shè)激勵(lì)為 DAC,則 GNDSENSE 應(yīng)當(dāng)連接 DAC 的 REFGND。電橋的 GNDFORCE 連接應(yīng)當(dāng)具有專用的走線并一路連接回到電源,因?yàn)樵试S橋式電流流過接地層將產(chǎn)生不必要的壓降。
誤差預(yù)算
該電路的直流誤差預(yù)算如表 1 所示,主要由放大器的失調(diào)電壓和失調(diào)電壓漂移所決定。 它假定工作條件處于最差情況范圍內(nèi)。 總誤差滿足 1 mV 要求,并大幅優(yōu)于該要求。
表 1. 誤差預(yù)算
負(fù)載驅(qū)動(dòng)器電路
表中的第三項(xiàng)表示功耗誤差。 放大器功耗會(huì)增加芯片溫度,因此與環(huán)境溫度下的無(wú)負(fù)載電流情況相比,失調(diào)電壓產(chǎn)生漂移。 最差情況下的誤差計(jì)算采用最高電源電壓、最高輸出電壓以及最低阻性負(fù)載,如等式 1 所示。注意,放大器上的最差情況壓降通過 RISO 電阻得以部分降低。
負(fù)載驅(qū)動(dòng)器電路
直流測(cè)量結(jié)果 
誤差電壓等于輸入電壓 VIN, 和負(fù)載電壓 VOUT 之差。 圖 4 顯示原型電路的誤差電壓與負(fù)載電壓的關(guān)系。 橋式驅(qū)動(dòng)器電路中的最大誤差源是失調(diào)電壓和失調(diào)電壓漂移。 由于放大器功耗而產(chǎn)生的額外誤差與橋式電壓有關(guān)。 電源電壓對(duì)功耗的影響可從不同顏色的曲線中看出來(lái)。 黑色曲線功耗最低(50 mW),電源電壓最小(7 V)。 芯片僅升溫 7°C,因而該曲線代表室溫失調(diào)電壓與該器件共模電壓的關(guān)系。
負(fù)載驅(qū)動(dòng)器電路
圖 4. 誤差電壓與輸出電壓的關(guān)系
色(10 V)和藍(lán)色(15 V)曲線分別代表 175 mW 最大功耗和 385 mW 最大功耗下的性能。 隨著輸出電壓的上升,額外的功耗使芯片升溫 25°C 至 55°C,導(dǎo)致失調(diào)電壓發(fā)生漂移。 該額外熱誤差曲線形狀為拋物線形,因?yàn)楫?dāng) VOUT 為 VDD 一半時(shí),具有最大功耗。
電源在很大程度上依賴失調(diào)電壓,這表示應(yīng)當(dāng)考慮該電路的電源抑制。 圖 5 顯示掃描電源電壓并固定輸出電壓時(shí)的誤差電壓。 黑色曲線表示輕載情況,此時(shí)放大器電源抑制(PSR)起主要作用。 就該器件而言,10 µV 變化表示 118 dB PSR。 紅色和藍(lán)色曲線顯示輸出消耗額外功耗(由于負(fù)載為 350 Ω和 120 Ω典型橋式電阻)的結(jié)果。紅色和藍(lán)色曲線的有效 PSR 分別為 110 dB 和 103 dB。
負(fù)載驅(qū)動(dòng)器電路
圖 5. 誤差電壓與電源電壓的關(guān)系
該電路性能顯然取決于失調(diào)漂移與溫度的關(guān)系。目前為止,在所有與溫度有關(guān)的誤差計(jì)算中均采用了 TCVOS 規(guī)格。 需要為該假設(shè)找到合理的解釋,因?yàn)樾酒瑴囟扔捎诜糯笃鞴呐c環(huán)境溫度的改變有所不同而上升。 前者在芯片表面形成較大的溫度梯度,影響放大器的微妙平衡。 這些梯度會(huì)使失調(diào)電壓漂移相比數(shù)據(jù)手冊(cè)規(guī)格而言要差得多。 ADA4661-2 經(jīng)特殊設(shè)計(jì),其功耗極大且不影響失調(diào)漂移性能。
圖 6 顯示失調(diào)漂移測(cè)量值與溫度的關(guān)系。額定性能重現(xiàn)于黑色曲線,并具有低電源電壓與高阻性負(fù)載(–1.2 µV/°C)。 紅色曲線顯示 120 Ω橋式負(fù)載結(jié)果。 值得注意的是,曲線的形狀未發(fā)生改變;它僅僅由于芯片升溫(6.4°C)而向左平移。 藍(lán)色曲線顯示電源電壓上升至 15 V 時(shí)的結(jié)果——此時(shí)可測(cè)量電路的最大功耗。 同樣地,曲線形狀不發(fā)生改變,但由于芯片升溫 55°C 而向左平移。 內(nèi)部功耗已知(385 mW),因此可計(jì)算系統(tǒng)的實(shí)際熱阻 (θJA),即 143°C/W。 重要的是需考慮工作的環(huán)境溫度范圍。 最大芯片溫度不應(yīng)超過 125°C;這意味著對(duì)于最差情況負(fù)載而言,最大環(huán)境溫度為 70°C。
負(fù)載驅(qū)動(dòng)器電路
圖 6. 誤差電壓與環(huán)境溫度的關(guān)系
瞬態(tài)測(cè)量結(jié)果
電路的階躍響應(yīng)是評(píng)估環(huán)路穩(wěn)定性的簡(jiǎn)便方法。 圖 7 顯示高電阻電橋在容性負(fù)載范圍內(nèi)的階躍響應(yīng)測(cè)量值;圖 8 顯示低電阻電 橋在同樣條件下的測(cè)量值。 由于反饋網(wǎng)絡(luò)的極點(diǎn) - 零點(diǎn)二聯(lián)效應(yīng) ,該電路的階躍響應(yīng)具有過沖特性。 該二聯(lián)響應(yīng)存在于基波中,因?yàn)殡娐贩答佅禂?shù)從低頻時(shí)的單位增益下降至高頻時(shí)的 0.13。 由于零點(diǎn)相較極點(diǎn)而言處于更高的頻率,階躍響應(yīng)將始終過沖,哪怕相位裕量遠(yuǎn)大于適當(dāng)值。 此外,二聯(lián)效應(yīng)在電路中具有最大的時(shí)間常數(shù),因此趨向于對(duì)建立時(shí)間產(chǎn)生主要影響。 當(dāng)采用高阻性負(fù)載以及 1 nF 容性負(fù)載時(shí),電路具有最差情況下的穩(wěn)定性以及輸出級(jí)振鈴。
負(fù)載驅(qū)動(dòng)器電路
圖 7. 無(wú)負(fù)載階躍響應(yīng)
負(fù)載驅(qū)動(dòng)器電路
圖 8. 有負(fù)載階躍響應(yīng)
結(jié)論
本文所示之負(fù)載驅(qū)動(dòng)器電路可為低至 120 Ω的阻性負(fù)載施加 5 V 電壓,而總誤差不超過 1 mV,并且能穩(wěn)定驅(qū)動(dòng)高達(dá) 10 nF 總電容。 電路符合其額定性能,并能以 7 V 至 15 V 的寬范圍電源供電,功耗接近 400 mW。 通過以±7 V 電源為放大器供電,該基本電路便可擴(kuò)展驅(qū)動(dòng)正負(fù)載和負(fù)負(fù)載。 全部性能通過一個(gè) 3 mm × 3 mm 小型放大器以及四個(gè)無(wú)源元件即可實(shí)現(xiàn)。
烜芯微專業(yè)制造二極管,三極管,MOS管,橋堆等20年,工廠直銷省20%,4000家電路電器生產(chǎn)企業(yè)選用,專業(yè)的工程師幫您穩(wěn)定好每一批產(chǎn)品,如果您有遇到什么需要幫助解決的,可以點(diǎn)擊右邊的工程師,或者點(diǎn)擊銷售經(jīng)理給您精準(zhǔn)的報(bào)價(jià)以及產(chǎn)品介紹
相關(guān)閱讀